Kỳ thi thử tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2022-2023 - Phòng giáo dục và đào tạo Bảo Thắng (Có hướng dẫn chấm)
Câu 5 (0,5 điểm): Chọn ngẫu nhiên một học sinh từ một nhóm học sinh gồm: 3 học sinh khối lớp 7;
5 học sinh khối lớp 8 và 8 học sinh khối lớp 9. Tính xác suất để học sinh được chọn là học sinh khối
lớp 7 hoặc khối lớp 8.
Câu 6 (1,0 điểm): Cho tam giác ABC đều có cạnh bằng a.
a) Tính độ dài đường cao AH của tam giác ABC ;
b) Trên tia đối của tia BC lấy điểm D sao cho ADC = 45⁰ . Tính độ dài đoạn BD.
5 học sinh khối lớp 8 và 8 học sinh khối lớp 9. Tính xác suất để học sinh được chọn là học sinh khối
lớp 7 hoặc khối lớp 8.
Câu 6 (1,0 điểm): Cho tam giác ABC đều có cạnh bằng a.
a) Tính độ dài đường cao AH của tam giác ABC ;
b) Trên tia đối của tia BC lấy điểm D sao cho ADC = 45⁰ . Tính độ dài đoạn BD.
Bạn đang xem tài liệu "Kỳ thi thử tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2022-2023 - Phòng giáo dục và đào tạo Bảo Thắng (Có hướng dẫn chấm)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
File đính kèm:
- ky_thi_thu_tuyen_sinh_vao_lop_10_thpt_mon_toan_nam_hoc_2022.pdf
Nội dung text: Kỳ thi thử tuyển sinh vào Lớp 10 THPT môn Toán - Năm học 2022-2023 - Phòng giáo dục và đào tạo Bảo Thắng (Có hướng dẫn chấm)
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO KỲ THI THỬ TUYỂN SINH VÀO LỚP 10 THPT BẢO THẮNG NĂM HỌC 2022 – 2023 Môn thi: Toán. ĐỀ CHÍNH THỨC Thời gian: 120 phút (không kể thời gian giao đề) (Đề thi gồm có 01 trang, 07 câu) Câu 1 (1,0 điểm): Tính giá trị của các biểu thức sau: a) A =+6 4 5 ; b) B =3. 27 − 37 − 1. 111 a + Câu 2 (1,5 điểm): Cho biểu thức: M =+ : với aa 0 ; 1 . aaaaa−−−+ 121 a) Rút gọn biểu thức M ; b) So sánh giá trị của M với 1. Câu 3 (2,5 điểm): a) Giải phương trình: xx2 + −8 =9 0 . b) Tìm tất cả giá trị của tham số k để đường thẳng (dykxk):1=++( ) đi qua điểm M (1; 1). c) Cho Parabol: (P y) x: = 2 và đường thẳng d y:2 x = − + . Tìm tọa độ các giao điểm AB; của (P) và d biết hoành độ của A nhỏ hơn hoành độ của B . Gọi CD; lần lượt là hình chiếu vuông góc của AB; lên trục hoành, tính diện tích của tứ giác A B D C . Câu 4 (1,5 điểm): xy+=−23 a) Giải hệ phương trình: . 238xy−= b) Cho 5 kg dung dịch loại I và 6 kg dung dịch loại II của cùng một loại muối A. Biết rằng tổng khối lượng muối A trong cả hai dung dịch bằng 0.49 kg và nồng độ muối A trong dung dịch loại I hơn nồng độ muối A trong dung dịch loại II là 1% . Tìm khối lượng muối A trong mỗi dung dịch. Câu 5 (0,5 điểm): Chọn ngẫu nhiên một học sinh từ một nhóm học sinh gồm: 3 học sinh khối lớp 7; 5 học sinh khối lớp 8 và 8 học sinh khối lớp 9. Tính xác suất để học sinh được chọn là học sinh khối lớp 7 hoặc khối lớp 8. Câu 6 (1,0 điểm): Cho tam giác ABC đều có cạnh bằng a . a) Tính độ dài đường cao AH của tam giác ABC ; b) Trên tia đối của tia BC lấy điểm D sao cho ADC = 450 . Tính độ dài đoạn BD. Câu 7 (2,0 điểm): Qua điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB, AC với đường tròn ( BC, lần lượt là các tiếp điểm). a) Chứng minh: Tứ giác ABOC nội tiếp một đường tròn. (1đ) b) Gọi M là trung điểm đoạn thẳng AB ; đường thẳng MC cắt đường tròn tại giao điểm thứ 2 là điểm N . Chứng minh: Hai tam giác MBN, MCB đồng dạng. (0,5đ) c) Tia AN cắt đường tròn tại giao điểm thứ 2 là điểm D . Chứng minh: ADC= MAN . HẾT Thí sinh được sử dụng máy tính cầm tay; cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh .SBD Chữ ký CBCT số 1: Chữ ký CBCT số 2
- PHÒNG GIÁO DỤC VÀ ĐÀO TẠO KỲ THI THỬ TUYỂN SINH VÀO LỚP 10 THPT BẢO THẮNG NĂM HỌC 2022-2023 Môn thi: Toán Đ Ề CHÍNH THỨC HƯỚNG DẪN CHẤM – THANG ĐIỂM (Hướng dẫn chấm, thang điểm gồm có 03 trang) I. Hướng dẫn chung 1. Cho điểm lẻ tới 0,25; 2. Điểm toàn bài là tổng điểm thành phần, không làm tròn; 3. Chỉ cho điểm tối đa khi bài làm của thí sinh chính xác về mặt kiến thức; 4. Thí sinh giải bằng cách khác cho điểm tương ứng ở các phần; 5. Câu 6, 7 không có hình vẽ hoặc hình vẽ sai không chấm điểm. II. Đáp án, thang điểm Câu Đáp án Điểm a) A=+=+64585 0,25 =13 0,25 1 b) B =−−=−3.273713.2736 0,25 (1,0 điểm) =−=−=816963 0,25 Chú ý: Thí sinh chỉ ghi kết quả đúng cho 0,25 điểm mỗi ý a,b. 111 a + Cho biểu thức: M =+ : với aa 0 ; 1 . aaaaa−−−+ 121 a) Rút gọn biểu thức M 111 a + M =+: 2 0,25 aaa(1)1 −−( a −1) 11++aa = : 2 0,25 aa(1) − ( a −1) 2 2 1+ a ( a −1) (1,5 điểm) = . 0,25 aaa(1)1 −+ a −1 = 0,25 a b) So sánh giá trị của M với 1. a −11 Xét hiệu: M −11 =− 11 = −− aa 0,25 1 = − 0 với Vậy: M 1 0,25 a a) Giải phương trình: xx2 +8 − 9 = 0 . Ta có: abc===1;8;9 − . 0,25 abc+ + =1 + 8 +( − 9) = 0 0,25 Vậy phương trình đã cho có nghiệm: x1 =1 0,25 3 −9 và x = = −9 0,25 (2,5 điểm) 2 1 Chú ý: Thí sinh chỉ ghi kết quả, không thực hiện giải phương trình chấm 0,25 mỗi nghiệm đúng.
- b) Tìm tất cả giá trị của tham số k để đường thẳng (dykxk):1=++( ) đi qua điểm M (1; 1) Đường thẳng đi qua điểm khi và chỉ khi: 0,25 1=(kk + 1) .1 + =k 0 0,25 c) Cho Parabol: (P y) x: = 2 và đường thẳng d y:2 x = − + . Tìm tọa độ các giao điểm AB; của (P) và d biết hoành độ của A nhỏ hơn hoành độ của B . Gọi CD; lần lượt là hình chiếu vuông góc của AB; lên trục hoành, tính diện tích của tứ giác A B D C . Phương trình hoành độ giao điểm của (P) và d : xxxx2 = −+ ==212 − 0,25 Vì hoành độ của A nhỏ hơn hoành độ của B nên xAA= −2 y = 4 A ( − 2;4) . 0,25 xyBBB= = 11(1;1) . Ta có CD; là hình chiếu của AB; nên A C C⊥ D và B D C⊥ D . Do đó tứ giác 0,25 A B D C là hình thang vuông có ACCDBD===4;3;1 . ()(41).3ACBDCD++ ===S 7,5 (đvdt) 0,25 ABDC 22 xy+ =23 − a) Giải hệ phương trình: . 2 3xy 8−= xyxy+=23246 −+= − Ta có: 0,25 238238xyxy−=−= xy+=23 − 0,25 714y =− x +2.( − 2) = − 3 0,25 y =−2 x =1 0,25 y =−2 Chú ý: Thí sinh không giải hệ, chỉ viết đúng nghiệm chấm 0,5 điểm. 4 b) Cho 5 kg dung dịch loại I và 6 kg dung dịch loại II của cùng một loại muối A. Biết rằng (1,5 điểm) tổng khối lượng muối A trong cả hai dung dịch bằng 0 . 4 9 kg và nồng độ muối A trong dung dịch loại I hơn nồng độ muối A trong dung dịch loại II là 1% . Tìm khối lượng muối A trong mỗi dung dịch. Gọi khối lượng muối trong dung dịch loại I và dung dịch loại II lần lượt là x, y( x , y 0). Ta có: xy+=0.49 (1) Do nồng độ muối A trong dung dịch loại I hơn nồng độ muối A trong dung dịch 0,25 xy 1 loại II là nên: −= (2) 5 6 100 xy+=0.49 Từ (1) và (2) ta có hệ phương trình: xy 1 −= 5 6 100 0,25 x = 0.25 y = 0.24 Vậy, khối lượng muối A trong mỗi dung dịch loại I và II lần lượt là 0.25 kg và
- 0.24kg Chọn ngẫu nhiên một học sinh từ một nhóm học sinh gồm: 3 học sinh khối lớp 7; 5 học sinh khối lớp 8 và 8 học sinh khối lớp 9. Tính xác suất để học sinh được chọn là học sinh khối lớp 7 hoặc khối lớp 8. Số phần tử của không gian mẫu là số cách chọn ngẫu nhiên 1 học sinh từ 16 học sinh cả 3 khối lớp: n(=) 16. 0,25 Gọi biến cố A: “Học sinh được chọn là học sinh khối lớp 7 hoặc học sinh khối lớp 5 8”. Theo Quy tắc cộng, số kết quả thuận lợi cho biến cố A là: nA( ) = +3 = 5 8 . (0,5 điểm) nA( ) 81 Vậy, xác suất của biến cố A: PA( ) === . 0,25 n() 162 Chú ý, đối với các trường chưa Dạy/học nội dung Xác suất – Thống kê thì có thể điều chỉnh như sau: *)Không chấm Câu 5; *)Điều chỉnh tăng thang điểm Câu 4b (Giải toán bằng cách lập Hệ phương trình) từ 0,5 điểm thành 1,0 điểm (Chấm 0,25 điểm/mỗi ý đúng). Cho tam giác ABC đều có cạnh a . a)Tính độ dài đường cao AH của tam giác ABC 6 (1,0 điểm) Tam giác AHC vuông tại H có ACaACH==,60 0 . 0,25 AHa 3 Khi đó: sin.sin.sin60.ACHAHACACHa= === 0 0,25 AC 2 b) Trên tia đối của tia BC lấy điểm D sao cho ADC = 450 . Tính độ dài đoạn BD. a 3 Do ADC = 450 nên tam giác A H Dlà tam vuông cân, khi đó: DHAH== . 0,25 2 Mặt khác, tam giác đều có cạnh ; chân đường cao H là trung điểm BC a aa3 a( 31− ) 0,25 nên: BH = . Vậy: BD=−=− DH =BH . 2 222 7 Qua điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB, AC với đường tròn (2,0 điểm) ( BC, lần lượt là các tiếp điểm).
- a) Chứng minh: Tứ giác A B O C nội tiếp một đường tròn. Do A B, A C là các tiếp tuyến với đường tròn (O) ( BC, lần lượt là các tiếp điểm) 0,25 nên: ABO = 900 A C O =900 0,25 Ta có: ABOACO+=1800 0,25 Vậy tứ giác nội tiếp đường tròn đường kính AO . 0,25 b) Gọi M là trung điểm đoạn thẳng AB ; đường thẳng MC cắt đường tròn tại giao điểm thứ 2 là điểm N . Chứng minh: Hai tam giác M B N M, C B đồng dạng. Hai tam giác có góc M chung. 0,25 1 MBNMCB==sđ BN . Vậy: −MBNMCBgg ( ) 0,25 2 c) Tia AN cắt đường tròn tại giao điểm thứ 2 là điểm D . Chứng minh: ADCMAN= . MBMN Do MBNMCBMBMN = = MC 2 . MCMB 0,25 MAMN Mặt khác: MAMB= , do đó: MAMN2 = = MCMANMCA. MCMA 1 Ta được: MANMCA= , kết hợp với MCAADC==sđ NC . 2 0,25 Vậy: